8.3.2

8.3.2 Resolución de problemas multiplicativos que impliquen el uso de expresiones algebraicas, a excepción de la división entre polinomios.

Antes de comenzar recordemos que una expresión algebraica es:
Una expresión algebraica es una combinación de letras y números ligadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las expresiones algebraicas nos permiten, por ejemplo, hallar áreas y volúmenes.

En una expresión algebraica se llaman términos semejantes a todos aquellos términos que tienen igual factor literal, es decir, a aquellos términos que tienen iguales letras (símbolos literales) e iguales exponentes.
Por ejemplo:
6 a2bes término semejante con – 2 a2b3 porque ambos tienen el mismo factor literal (a2b3)
1/3 x5yz es término semejante con x5yz porque ambos tienen el mismo factor literal (x5yz)
0,3 a2no es término semejante con 4 ac2 porque los exponentes no son iguales, están al revés.
Reducir términos semejantes significa sumar o restar los coeficientes numéricos en una expresión algebraica, que tengan el mismo factor literal.
Para desarrollar un ejercicio de este tipo, se suman o restan los coeficientes numéricos y se conserva el factor literal.

Recordando cómo se suman los números enteros:
Las reglas de suma se aplican únicamente a dos casos: números de igual signo y números con signo distinto.
Las reglas a memorizar son las siguientes:
a) Números de igual signo: Cuando dos números tienen igual signo se debe sumar y conservar el signo.
      Ej  :         – 3   +   – 8  =   – 11      ( sumo y conservo el signo)
                      12   +   25  =   37       ( sumo y conservo el signo)
        Ej  :   – 7   +   12   =   5    (tener 12 es lo mismo que tener  +12, por lo tanto, los números son de distinto signo y se deben restar: 12  -  7  =   5
b) Números con distinto signo: Cuando dos números tienen distinto signo se debe restar y conservar el signo del número que tiene mayor valor absoluto
                    5   +   – 51   =   – 46    ( es negativo porque el 51 tiene mayor valor absoluto)
                   – 14  +   34   =    20
Recordando cómo se resta:
Para restar dos números o más, es necesario realizar dos cambios de signo porque de esta manera la resta se transforma en suma y se aplican las reglas mencionadas anteriormente.
Son dos los cambios de signo que deben hacerse:
a)      Cambiar el signo de la resta en suma
b)      Cambiar el signo del número que está a la derecha del signo de operación por su signo contrario
Ej:      – 3  –  10    =    – 3    +  – 10  =    – 13   ( signos iguales se suma y conserva el signo)
            19   – 16    =      19 +  – 16   =     19   –    16    =    3

Consigna 1

Analicen la siguiente figura; luego respondan lo que se pide: 







a) ¿Cuáles son las medidas de los lados del rectángulo blanco?
b) ¿Cuál es el perímetro y el área del rectángulo blanco?
c) ¿Cuál es el perímetro y el área de la parte sombreada?


Consigna 2: , resuelvan el siguiente problema:

Se está armando una plataforma con piezas de madera como las siguientes:

                                                                                                  


De acuerdo con las dimensiones que se indican en los modelos:
¿Cuáles son las dimensiones (largo y ancho) de la plataforma?


¿Cuál es la expresión algebraica que representa el área de la plataforma?


¿Cuál es la expresión algebraica que representa el perímetro de la plataforma?
Si x es igual a 50 cm, ¿cuál es el perímetro y área de la plataforma?









                                                                                                                                       
 
Resuelve los siguientes ejercicios:

a)    (x + 9)2 =
b)    (x – 10)2 =
c)    (2x +y)2=
d)    (x + m)(x + m) =
e)    (x - 6)(x -6 )  =



No hay comentarios: